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ABSTRACT

The specialization of the simplex algorithm for the solution of

generalized network flow problems rests on the fact that a basis for

the problem may be represented graphically as a spanning forest in

which each component is either a one-tree or a rooted tree. The

design of a specialized algorithm for efficient solution of generalized

network problems necessarily depends on data structures chosen to

represent the basis. This paper presents the design and detailed

algorithmic specification of the primal simplex algorithm for such

problems. Computational testing to determine the overhead required

by generalized network data structures over pure network data structures

indicates that generalized network algorithms are on the order of 2.5

to 3.5 times slower than pure network algorithms. Computational testing

with generalized network problems with up to 1000 nodes and 7000 arcs

establishes the suitability of the data-structures for efficient

implementation of primal simplex calculations. . .. : , -
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I. Introduction

The generalized network problem is a specialized linear programmning

problem which may be defined as

min cx

S.t. Ax r

0 ~x SU

where A is a nxm node-arc incidence matrix with multipliers on the arcs.

That is, each column, a ks has at most two non-zero entries, dk in row i and

gin row j. The problem may be easily scaled so that one of the entries,

say dk is a + 1. If gkis zero, then the variable corresponds to a loop.

Otherwise, the column ak represents an arc from n~ode i to node j where dk
units leave node i, producing gk units at node j. Without loss of generality,

we assume that the matrix A corresponds to a connected network, G(N,E), where

C the rows correspond to the node set N of the network, and the variables

correspond to the arc set E of the network. -Further, we assume that the

matrix A is of full row rank. It can be shown that if the rank is n-i, then

the problem corresponds to a pure network problem £4].

The specialization of the simplex algorithm for the solution cf such

problems rests on the fact that the basis for a generalized network problem

corresponds to a graphical structure referred to as a spanning forest. Much

in the same manner that the development of specialized solution software for

the pure network problem rests on data structures for the representation of a

spanning tree, specialized solution software for solution of the generalized

network problem rests on the representation of a spanning forest.

~6 The design of a specialization of the simplex method for the solution

of generalized network problems is necessarily dependent on the data structure
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chosen to represent the basis. The basis for a generalized network flow

problem has the following form:

rB1

where each of the t submatrices B. has the form:

d 
d

g2 d3  g2

d or d gq

L.'--q i dq g I dqj

(a) 1-tree with self loop (b) 1-tree with loop

The basis corresponds to a spanning forest on the node set N in which
each matrix B. corresponds to a 1-tree.

A 1-tree on a node set Ni with cardinality ni consists of a spanning

tree on the node set together with one additional arc, thus forming exactly

one cycle. The cycle may correspond to a self loop as in (a). This is the

main distinction between the generalized network flow problem and the pure

network problem. Thus a data structure which represents a spanning forest

should be able to distinguish between subsets of nodes. That is, distinguish

between the various 1-trees in the basis. Further, the data structure should

facilitate the three essential operations of a primal simplex pivot:

(1) pricing, or the determination of an entering variable, (2) the ratio test
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operation which finds the representation of the incoming variable with respect

to the current basis and then finds the leaving variable and (3) the update of

the dual variables to effect the pricing operation.

II. Data Structure

An examination of the requirements for effecting the Primal simplex

operations makes it clear that the pricing operation is trivial once given

the dual variables at any iteration. The column uodate or the ratio test

operations are more involved. The entering arc may connect two nodes in the

same 1-tree, or it may have one node in one 1-tree and the other in another

. 1-tree. There are several possibilities for the leaving arc:

(a) The entering arc is in a 1-tree, and the leaving arc is in the loop of

the 1-tree. Therefore, a new loop will be formed, and the previous

loop will be broken.

- (b) The entering arc is in a 1-tree, and the leaving arc is in the loop

formed by the entering arc. Therefore, there is no new loop formed

and no old loop broken. This is similar to a pure network pivot.

(c) The entering arc is in a 1-tree. The leaving arc is neither in the

old loop nor in the new loop formed by the entering arc. Therefore,

the old loop remains intact, and a new loop is formed. Thus, the old

1-tree is split into two separate 1-trees.

(d) The entering-arc connects two 1-trees, and the leaving arc is a loop

arc. Thus, the two 1 trees are coalesced into a single 1-tree.

(e) The entering arc connects two 1-trees, and the leaving arc is not a

loop arc. Thus, after the pivot, there are still two 1-trees with

the old loops intact.

In order to effect pivots of the type summarized in (a) - (e), it is

important to distinguish between loop arcs of a 1-tree and to be able to

S.

* . * . . * -. *'. .
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distinguish between the various 1-trees of a forest. In general, since the

number of 1-trees in a basis can vary, a data structure should be able to

effect changes in spanning forests efficiently.

.5' The data structure used for storing the spanning forest corresponding

to the basis of a generalized network problem consists of the following

" . node-length arrays:

p(i) The predecessor of a node i,

b(i) The brother of a node i, (0 for loop nodes),

s(i) The successor of a node i,

l(i) The level of a node i. For a node which is not part of a loop,

,this gives the distance from the nearest node of the loop. For

a node which is part of the loop, this is either 0 or a negative

number. Zero for a self-loop. Negative for a loop node of a

1-tree where the absolute value gives the number of the particular

1-tree, i.e. the name given to the 1-tree.

a(i) The arc connecting node i to its predecessor. This number is

positive if the arc is from the node to its predecessor and

negative otherwise.

In Figure 1, this data structure is illustrated for a spanning forest

on 16 nodes with two 1-trees. One of the 1-trees contains a self-lnop while

the other contains a loop with three arcs. The brother and successor labels

allow a traversal of the 1-trees. While a preorder traversal [ ] has been

shown to be suitable for a tree, it cannot determine the distinction between

1.z.,. various subtrees of a 1-tree rooted on any one of the loop-nodes. A traversal

of a 1-tree is possible using the brother and successor labels.

'- The spanning 1-tree can be regarded as several rooted trees together in a

loop. If this loop is ignored, then every non-loopnode has a unique path to the



5

16

15 14

12 15 16'

C2 3

24 ,

1"0

.3

Nods Predecessor" Brot:her Succesor L.-mve Ara

1. 44 0 2 1 5

7 0 3 -1 -2
5 2 0 0 2 -
6 3 9 0 2 7

99 0 10 .0 o
10 9 0 12 1 9
11 1.z 0 0 4 1&
12 10 is 13 11
Iz 12 14 11 -15

•14 12 0 0.• 14
" 10 16 0 2 -12

16 to 0 0 2 13

vFigure



6

nearest loop node which is its root. The predecessor of a non-loop node is

the next node on the path to this root. For a loop node, the predecessor is

the next node on the loop so that a trace of the loop can be effected by

using the predecessor. For a self-loop, the predecessor of the root node is

itself. Thus, the predecessor allows for a traversal from any node to the

root and the entire loop. For examole, in Figure 1, by making use of the

predecessor, the traversal from node 5 down to node 1 can be effected and

further, the traversal around the loop from node 1 to node 4 to node 7 and

back to node 1.

Apart from the above mentioned arrays, the following node length arrays

are used in addition:

" f(i) the flow on arc a(i),

- v(i) the dual variable for node i,

y(i) the updated column representation coefficient.

Thus, a total of 8-node length arrays are used together with at most

half-node length arrays for the loop factors. There are only four arc length

arrays necessary for storing the arc data. These are the to node node(x),

the multiplier or gain g(x), the cost c(x) and the capacity cap(x).

III. Ratio Test

The ratio test operation consists of evaluating the vector y such

that

By zak

Since ak = dk ei - ej , where e. is the ith unit vector, and because of the
k k*

block diagonal structure of the basis, B, the non-zero entries of the vector

l ak may occur in the same block of B or in two different blocks of B. In the

primal simplex specialization for the pure network problem, the ratio test

-, can be performed as the vector y is evaluated since the entries in the

04

* *.44* • . .,4*.w ,I--..
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y vector are either +1, -1, or 0. Thus, only a single pass of the relevant

arcs in the basis which produce non-zero entries in the y vector is required.

For the specialization of the primal simplex algorithm for the generalized

network problem, it is desirable to evaluate the y vector in a manner such

that the analogous number of passes is a minimum. Two cases arise immediately:

(1) The non-zero entries of the entering arc occur in two different

blocks, i.e., two 1-trees.

(2) The non-zero entries of the entering arc occur in the same block

of the basis, i.e., one 1-tree.

By viewing the operation as
t- By' + By" =k~-ge

By- By d k e i " gk ej

. the essential operation to be performed is the solution of the following

system of equations, the system of equations for a single block of the

basis B. A single block corresponds to a spanning 1-tree.

For simplicity, we consider only the rows and columns of the block

which correspond to non-zero entries in the y vector to be evaluated.

The system of equations then takes the form:

g1  d2  Y2 0

g2  d3  Y3

9 d0
gp-1 dp gq yp

p d ~q yq

Note that one of the entries in each column, either dI or g, will be a +1,

and all the entries d are non-zero.
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This corresponds to-the graph shown in the figure 2. The incidence

node for the entering arc corresponds to the node for row 1 or the above

system. We shall assume that the nodes are numbered in the order of the

rows. There are p-I nodes until the first loop node, node p, is reached,

and nodes p through q are all in the loop. Note that if gq is zero, then

the node q has a self-loop, and o q. The solution to the above system is

obtained as:

Y= 1/d1

Yi : i-I (-qi-/di) i : 2,3,... ,p-1,p+1,. ..
Yp :Yp-jI [gp-i/d p "G)]

wnere F = (-g ) ...(-gq) / (d . . .d ) and G = I - F, and for self-loop F = 0,

F is called the loop factor. This calculation can be performed on the 1-tree

by making use of the suggested data structure. Tracing the path down to the

loop is effected by making use of the predecessor index. The first node on

the loop is identified by making use of the level index. Note that the loop

factor F, as well as G, can be obtained when the 1-tree is constructed. Thus,

N it is not necessary to trace the loop twice to effect the above solution of

equations. The y vector corresponding to any entering arc can be obtained by

evaluating y' and y" from

By' dke i

ByA gkeJ

and then setting y - dky' .

S .
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Depending on whether the entering arc is incident to two blocks or one

block the ratio test and the y vector evaluation can be performed simultaneously

or simultaneously in part only. If there are two blocks then, the ratio test

can be performed as the vectors y" and y" are evaluated. This is because

no basic arc can appear in both y' and y". Thus no superfluous calculation

is performed.

If there is only one block then, arcs on the path from node i to the

loop and arcs on the path from node j to the loop may in fact overlap. It is

desirable to arrange the calculations so that the ratio test can be performed

as the y vector is evaluated. In order to perform this operation efficiently

we define a node which is called the junction of the paths to the root. The

junction is defined to be the connon node with highest level on the two paths.

It may not always exist. The following algorithm summarizes the ratio test

operation.

Algorithm 1. Ratio Test

0. [Initialize]

a. [set y] y(x4 : 0 x = i, 2, ... , m

b. [set junction flag] junction : 0

c. [increase or decrease flow on arc Q : sign(cap(k))

d. [set leaving arc] u :- 0

e. [set a to bound] a := II cap(k) I

1. Travel from node i to its root node, where the root node is the loop

node that has the nearest distance from the node.

a. [initialize] T :I t ,. x :, I

b. [root node 71 if I(x) s 0 , then Ti :a T

.4. [store the root node of i) R1 := x

go to 2
'4

°.



Algorithm 1, continued.

c. [evaluate y(x)]

if a(x) > 0 , then y(x) T + y(x)

T :=-T g[a(x)]

go to d.

otherwise T T/ga(x)]

y(x) := T + y(x)

T := -T

go to d.

d. Determine maximum allowable flow change

d.l. [increase flow ?] if 6 • y(x) > 0 then go to d.3

*",. d.2. [increase flow] if cap[ Ii a(x) 1 - f(x) >

-5 • y(x)

then go to d.4.

otherwise A cap[ 11 (a(x))I ]- f(x)

-6 • y(x)

1i := x

go to d.4.

d.3. [decrease flow] if f(x) _

• y(x)

then go to d.4.

otherwise a := f(x)/(S • y(x))
,... IJ := X

L :z 1

go to d.4.

d.4. [move to next node] x :- p(x)

d.5. go to b.

.- . , ., - . - - ., - - _ _ ---, . .. -U . .. . . ,. . . . ... . .. . .. . .. , . .-. -- ,-:,; K:'.-{,v ,,, '_ ,- .--. "---. .. . -'-, .. ". . --. ,'- . -. "" . ..-". - "-
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AlQorithm 1, continued.

2. Travel from node j to its root node

a. [initialize]. T g(k)

x j

Iul : i , u 0

b. [root node ?] if 1(x) s 0 then T2 T

R2 x

go to 3.

c. [junction node?] if junction = 0 and y(x) € 0

then junction : x

go to e.

d. [evaluate y(x) , determine maximum allowable flow change]

the same as 1.c and l.d , except change L 1 to L 1

e. [redo ratio test along the path from node i to node junction ?]

if 0 and 1 (junction) - 1( 1 )

then go to f.

otherwise go to d.

f. [redo ratio test from i to junction]

f.1. [initialize] x i
Sf.2. [finish ?I if x =junction then go to d.

f.3. [ratio test] the same as 1.d.1 - 1.d.4.

f.4. go to f.2

3. Travel along the loop

a. [i and j in the same subtree ?] if RI R2 then go to g.

b. [i and j in the same 1-tree ?]

if l(R1) 1(02) $ 0 then go to f.

. . . . . . . . . . . . . . . . .... . . . . . --- v.. . . . . . .
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Alqorithm 1, continued.

c. [evaluate y(x) along RI's loop[ I

c.1 [initialize] x R1

w RI

T Ti

c.2. [self-loop ?] if 1(w) = 0 then y(w) T

go to d.

c.3. [loop factor] if a(w) >0

then T T/[I - factor ( - l(w))]

y(w) = y(w) + T

T := -T • (g(w))

go to d.

otherwise T T/j[l-Factor(-1(w))]xg[-a(w)]t

y(w) = y(w) + T

T := -T

go to d.

c.4. [finish ?] if p(x) =w then go to e.

c.5. x: = p(x)

c.6. [evaluate y(x)] the same as i.c.

d. [ratio test]

d.i. the same as 1.d.i - i.d.4.

d.2. go to c.4.

e. [evaluate y(x) along R2's loop node and do ratio test]

e.i. [initialize] x :' R2

w : R2

T :- T2

)I

*y.-<:'r,*. * * ~ 4 .
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Alqorithm 1, continued.

e.2. the same as c.2 - c.6 ;d.1, d.2, except

changing c.5 go to e to c.5 terminate

and changing L = 1 to L = 2

f. the node i, j in the same 1-tree but have different root node

[start from R1 travel the loop, but only y(x) is evaluated]

the same as c.1. - c.6. except changing "go to d" to

"go to c.4"

g. [combine two travel as one]

g.1. [initialize] x R2

w R2

T TI + T2

g.2. the same as e.2.

p'.......................
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IV. Pivot and Dual Variable Update.

In order to obtain the proper dual variables and level indices, a sub-

-:tree needs to be traversed.. This traversal is effected by making use of the

successor and brother labels. To traverse the entire subtree, the following

rule is employed:

(a) If the node has a successor, vi sit it; otherwise

(b) If the node has a brother, visit the brother, otherwise

(c) If the predecessor of the node is the root of the

subtree, terminate; otherwise, visit it.

The above is the essential traversal which is used. The particular

pivot operation and the dual variable update dependent on the particular

type of pivot to be performed. If the entering arc is in the same 1-tree

of the forest then the operation is a little more complex than the case

in which the two incident nodes of the entering arc are in different 1-trees.

At the termination of the ratio test algorithm, the maximum allowable

change a~ is given, and if 4± = 0, then the entering arc is also the leaving

arc. In this case only a flow change is required. Otherwise, the leaving

arc is a, which is on the path L .The path from the tail node of the entering

arc to its root node is considered to be path 1 and the other path as path 2.

The various possibilities in terms of the type of change in the basis

occurring due to the specifics of the entering arc and the leaving arc have

been summarized in the introduction. The whole operation is separated into

three parts for exposition: Flow Update, Forest Update and the Dual Variable

Update.

The flow update is rather straightforward and is summarized in

Algorithm 2.

2S
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Algorithm 2. Flow Change

1. [have junction node?] if junction = 0 then go to 5

2. [update flow along path from i to junction]

a. [initialize] x: i

b. [finish?] if x : junction then go to 3

c. [update flow] f(x): = f(x) - 3 • • y(x)

d. [next node] x: = p(x) , go to b

3. [update flow from j to its root]

a. [initialize] x: = j

b. [finish?] if x = R2 , then go to 4

c. [update flow] f(x): : f(x) - 5 • A • y(x)

d. [next node] x: : p(x)

.'* go to b.

4. [update flow along the loop]

a. [initialize] x: = R2 , w: = R2

b. [update flow] f(x): = f(x) - 5 • A • y(x)

c. [finish?] if p(x) # w then x: = p(x)

go to b.

d. terminate

5. [update flow from i to its root]

a. [initialize] x: - i

b. [finish ?] if x - Ri then go to 6

c. [update flow] f(x): - f(x) - 6 * y(x)

,., d. [next node] x: p(x)

go to b.

6. [How many 1 - tree?] if I(RI) l l(R2) $ 0 or RI R2

then go to 3.

;. 1.*. . ..
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Algorithm 2, continued.

7. [update flow along the loop of the I - tree which contain node i]

a. [initialize] x: = RI , w: R1

b.c. the same as 4.b and 4.c

d. go to 3

In order to update the forest, Algorithm 3 is effected. This

procedure makes use of the information obtained during the ratio test

which determines the kind of update required. That is, the leaving

arc is associated with node 4 and L indicates the path which

0 contains node 4. The entering arc k is from node i to node j.

Alorithm 3. Update Predecessor orientation

1. [Initialize] if L= I then x: = i , w: = j , a0: = k

otherwise = j , w: i-k

2. [store some old data related to x]

0Po p(x)

a: = -a(x)

fo f(x)

3. [delete x from its old family]

a. [is x the successor of p ?]

if x a s(po) then s(p): =b(x)

go to 4

y-w. otherwise z: a s(p )
a

b. [is x the brother of z?]

if x - b(z) then b(z): - b(x)

go to 4

c. [check next one] z: - b(z) , go to b.

4. [sot w be the predecessor of x]j p(x): * w

,..........,.........-------------'---''*'. , '" ' ' ? -" -



Algorithm 3, continued.

5. [set x be the successor of y] b(x): = s(w)

Kj:-s(w): ax

f(x): a

a(x): = a0

6. [finish?] if x : u then terminate

7. [next] w: = x

0

a0: a

A: = f
* 0

go to 2.

MNote that if the leaving arc is a loop arc, the pivot will break

the old loop. For suc. a pivot, Algorithm 3 must be preceded by

making the loop node a successor of its predecessor. The update of

the forest is summarized in Algorithm 4.

Algorithm 4. Forest Update

1. [set flag for new loop] New: z 0

2. [how many I - tree?] if l(RI) I(RZ) ? 0 or Ri R2

then go to 4.

3. [Ctwo 1 - tree case,. no new loop formed]

a. [old loop broken?] if 1(p) > 0 then go to c

b. [make the loop node be the successor of its predecessor]

b.1. [initialize] x: -

W: - p(x)

b.2. [make C be the w's successor)

6(x): a s(w)

s(W): a x

, L .' A , % , -% , . ° .w . . . , • ., . . . . . . , . . . . . . . - . , . , - . ,
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Algorithm 4, continued.

b.3. [finish?] if w u then go to c

otherwise x: = w

W: = p(w)

go to b.2.

c. Use Algorithm 3.

d. terninate.

4. Only one 1 - tree, a new loop might be formed

a. [a new loop?]

* if junction > 0 and l(p.) :S l(junction)

then New I

and if 1(0) <1l(j) thenL 1

otherwise 1. = 2

b. Cold loop broken?] if 1(4) > 0 then go to e

c. Cold loop broken, new loop must be built] New I

* .d. [make the loop node be the successor]

the' same as 3.b.

e. Use Algorithm 3..

f. if New a0 then terminate

5. Delete the node on the new loop from its predecessor's family

a.. [initial-ize] x: i ,w: ap(x)

b. [delete x from w's family]

b.1. if x s(w) then s(w): a b(x)

go to c

otherwise W as(w)

b.2. if x ab(w) then b(w):-- b(x)

goto c
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Algorithm 4, continued.

b.3. w: b(w) ,go to b.2.

c. [finish?] if i p(x) then x: =p(x)

w: = P(x)

go to b.

d. terminate.

Specifics of the update of the dual variables and the level

index are summarized in Algorithm 5. Recall that the dual variables

are the solution to the following system of equations:

V'B =C'

The dual variables are updated since the current basis and the

updated basis differ in only one column. Only the following sub-

system need be considered:

gd 2

g9 dq

Thus, Yk dk 4. 19 C k s.S1

V d + V pq'

The subutix d q corresponds to the loop of 1-ti'ee.E; P.dj
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If there no new loops formed, the above submatrix remains unchanged; therefore

(v V,. .Vq) satisfy the last p-q+1 equation of the above system, and other
p q

(Vl,.. .vp1 ) can be easy calculated by the recursion equation traveling

up the subtree. Hence the key point is when a new loop is formed, we

should solve

d p gq 
=,.'-7 ~ ~(Vp,...,v IV ) c ,

-T -

or v B =c

-_. T - T -

Introduce 1 1 r

0
e r .such that

0 rq

Br e

or r 8 e

We already know how to get r from the B and e.

However, -r T r - -T-

Vp v e c B e c r.

Based on the above analysis we have the following algorithm.

Algorithm S. Update Dual Variable and Level Index

. Eany new loop ?] if new -1 then go to 3.

a . -, i" " " " " " " " " - ' " " " " " ' " " " ' '' ; " ' . ." " ' " " " " '
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Algorithm 5, continued.

2. at least one of node i or j has correct dual variable and level index

*a. [initialize] if L 1 then w j ,x j

b. [check successor] d x

x s(z), if x =0 then go to e.

c. [direction ?I if a(x) -0, then v(x) := c(a(x)) - g[a(x)] v(z)

otherwise v(x) := [c(-a(x)) -v(z)]/g[-a(x)]

d. [update level] 1(x) =1(z) + 1 go to b.

e. [finish ?I if z =w then go to g.

f. [check brother] x :zb(z) ,z =p(z)

if x A0 then go to c.

otherwise go to e.

g. terminate.

3. evaluate the dual variable of new ioop node i, assume the name-*of

new loop is a

a. [initialize] x i

V0

T 1

F: 1

b. if z(x) >0 then v0 :v 0 + T .c(x)

T -T *g(x)

F :z-g(x) * F

otherwise T := /g(x)

V0 :v + T *c(x)

T -T

F := -F/g(x)

c. [finish ?I if p(x) 2i then go to d.

* ... otherwise x :p(x) ,go to b.
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Algorithm 5, continued

d. [store loop vector] Factor ( ) F

e. [store v(i)] v(i) V.o/(l-F )

4. update dual variable and level by traveling entire new 1-tree.

a. Finitialize] x i go to c.

b. [set dual variable of the loop node x]

if a(w) - 0 then v(x) [c(a(w)) - v(w)]/g[a(w)]

otherwise v(x) c(a(w)) - v(w) g(-a(w)).

c. 1(x) :: 0 , w := x.

d. [travel the subtree rooted at node x]

the same as 2.b. - 2.f.

- Fset level index for node w] l(w) :-

h. [finish ?] if p (w) € i then x p(w) , go to b.

otherwise terminate.

o . -
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V. Computational Results

The data structures and algorithms presented in earlier sections have

been implementedin FORTRAN to develop a generalized network code at the

Center for Cybernetic Studies, The University of Texas at Austin. The com-

putational testing for this code has been carried out on two sets of pro-

blems: Pure network problems whose specifications are given in Table 1, and

Generalized Network problems whose specifications are given in Table 3.

These problems have been generated using NEIGEN [S)and one of its variants.

The pure network problems were solved using a pure network code; this code and

the generalized network code were both developed at the Center for Cybernetic

* Studies. The details of this computational testing are given in Table 2.

This testing was carried out in order to determine the overhead required by

the generalized network data structures over pure network data structures.

* Degradation in solution time varies from a factor of 2.2 to a factor of 4.0

~.; while the degradation in time per pivot varies from a factor of 2.6 to 3.7.

The results indicate that generalized network algorithms are on the order of

2.5 to 3.5 times slower than pure network algorithms.

The generalized network problems solved ranged from 200 nodes to 1000

nodes and 1500 arcs to 7000 arcs. The timings obtained for the solution of

these problems are given in Table 4. The results indicate that the data

structures presented are well-suited to carry out primal simplex operations

for generalized network problems.

r- ~~ .7. r-
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